Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Assessing Efficiency-Effectiveness Tradeoffs in Multi-Stage Retrieval Systems Without Using Relevance Judgments (1506.00717v1)

Published 2 Jun 2015 in cs.IR

Abstract: Large-scale retrieval systems are often implemented as a cascading sequence of phases -- a first filtering step, in which a large set of candidate documents are extracted using a simple technique such as Boolean matching and/or static document scores; and then one or more ranking steps, in which the pool of documents retrieved by the filter is scored more precisely using dozens or perhaps hundreds of different features. The documents returned to the user are then taken from the head of the final ranked list. Here we examine methods for measuring the quality of filtering and preliminary ranking stages, and show how to use these measurements to tune the overall performance of the system. Standard top-weighted metrics used for overall system evaluation are not appropriate for assessing filtering stages, since the output is a set of documents, rather than an ordered sequence of documents. Instead, we use an approach in which a quality score is computed based on the discrepancy between filtered and full evaluation. Unlike previous approaches, our methods do not require relevance judgments, and thus can be used with virtually any query set. We show that this quality score directly correlates with actual differences in measured effectiveness when relevance judgments are available. Since the quality score does not require relevance judgments, it can be used to identify queries that perform particularly poorly for a given filter. Using these methods, we explore a wide range of filtering options using thousands of queries, categorize the relative merits of the different approaches, and identify useful parameter combinations.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube