Papers
Topics
Authors
Recent
2000 character limit reached

Model-based reinforcement learning for infinite-horizon approximate optimal tracking

Published 1 Jun 2015 in cs.SY and math.OC | (1506.00685v1)

Abstract: This paper provides an approximate online adaptive solution to the infinite-horizon optimal tracking problem for control-affine continuous-time nonlinear systems with unknown drift dynamics. Model-based reinforcement learning is used to relax the persistence of excitation condition. Model-based reinforcement learning is implemented using a concurrent learning-based system identifier to simulate experience by evaluating the Bellman error over unexplored areas of the state space. Tracking of the desired trajectory and convergence of the developed policy to a neighborhood of the optimal policy are established via Lyapunov-based stability analysis. Simulation results demonstrate the effectiveness of the developed technique.

Citations (113)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.