Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bootstrap Bias Corrections for Ensemble Methods (1506.00553v1)

Published 1 Jun 2015 in stat.ML

Abstract: This paper examines the use of a residual bootstrap for bias correction in machine learning regression methods. Accounting for bias is an important obstacle in recent efforts to develop statistical inference for machine learning methods. We demonstrate empirically that the proposed bootstrap bias correction can lead to substantial improvements in both bias and predictive accuracy. In the context of ensembles of trees, we show that this correction can be approximated at only double the cost of training the original ensemble without introducing additional variance. Our method is shown to improve test-set accuracy over random forests by up to 70\% on example problems from the UCI repository.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.