Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Constraint Satisfaction and Semilinear Expansions of Addition over the Rationals and the Reals (1506.00479v1)

Published 1 Jun 2015 in cs.CC

Abstract: A semilinear relation is a finite union of finite intersections of open and closed half-spaces over, for instance, the reals, the rationals, or the integers. Semilinear relations have been studied in connection with algebraic geometry, automata theory, and spatiotemporal reasoning. We consider semilinear relations over the rationals and the reals. Under this assumption, the computational complexity of the constraint satisfaction problem (CSP) is known for all finite sets containing R+={(x,y,z) | x+y=z}, <=, and {1}. These problems correspond to expansions of the linear programming feasibility problem. We generalise this result and fully determine the complexity for all finite sets of semilinear relations containing R+. This is accomplished in part by introducing an algorithm, based on computing affine hulls, which solves a new class of semilinear CSPs in polynomial time. We further analyse the complexity of linear optimisation over the solution set and the existence of integer solutions.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube