Papers
Topics
Authors
Recent
2000 character limit reached

Hadoop Scheduling Base On Data Locality (1506.00425v1)

Published 1 Jun 2015 in cs.DC

Abstract: In hadoop, the job scheduling is an independent module, users can design their own job scheduler based on their actual application requirements, thereby meet their specific business needs. Currently, hadoop has three schedulers: FIFO, computing capacity scheduling and fair scheduling policy, all of them are take task allocation strategy that considerate data locality simply. They neither support data locality well nor fully apply to all cases of jobs scheduling. In this paper, we took the concept of resources-prefetch into consideration, and proposed a job scheduling algorithm based on data locality. By estimate the remaining time to complete a task, compared with the time to transfer a resources block, to preselect candidate nodes for task allocation. Then we preselect a non-local map tasks from the unfinished job queue as resources-prefetch tasks. Getting information of resources blocks of preselected map task, select a nearest resources blocks from the candidate node and transferred to local through network. Thus we would ensure data locality good enough. Eventually, we design a experiment and proved resources-prefetch method can guarantee good job data locality and reduce the time to complete the job to a certain extent.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.