Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Quasi-Random Approach to Matrix Spectral Analysis (1505.08126v3)

Published 29 May 2015 in cs.DS

Abstract: Inspired by the quantum computing algorithms for Linear Algebra problems [HHL,TaShma] we study how the simulation on a classical computer of this type of "Phase Estimation algorithms" performs when we apply it to solve the Eigen-Problem of Hermitian matrices. The result is a completely new, efficient and stable, parallel algorithm to compute an approximate spectral decomposition of any Hermitian matrix. The algorithm can be implemented by Boolean circuits in $O(\log2 n)$ parallel time with a total cost of $O(n{\omega+1})$ Boolean operations. This Boolean complexity matches the best known rigorous $O(\log2 n)$ parallel time algorithms, but unlike those algorithms our algorithm is (logarithmically) stable, so further improvements may lead to practical implementations. All previous efficient and rigorous approaches to solve the Eigen-Problem use randomization to avoid bad condition as we do too. Our algorithm makes further use of randomization in a completely new way, taking random powers of a unitary matrix to randomize the phases of its eigenvalues. Proving that a tiny Gaussian perturbation and a random polynomial power are sufficient to ensure almost pairwise independence of the phases $(\mod (2\pi))$ is the main technical contribution of this work. This randomization enables us, given a Hermitian matrix with well separated eigenvalues, to sample a random eigenvalue and produce an approximate eigenvector in $O(\log2 n)$ parallel time and $O(n\omega)$ Boolean complexity. We conjecture that further improvements of our method can provide a stable solution to the full approximate spectral decomposition problem with complexity similar to the complexity (up to a logarithmic factor) of sampling a single eigenvector.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.