Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Monadic second order finite satisfiability and unbounded tree-width (1505.06622v2)

Published 25 May 2015 in cs.LO

Abstract: The finite satisfiability problem of monadic second order logic is decidable only on classes of structures of bounded tree-width by the classic result of Seese (1991). We prove the following problem is decidable: Input: (i) A monadic second order logic sentence $\alpha$, and (ii) a sentence $\beta$ in the two-variable fragment of first order logic extended with counting quantifiers. The vocabularies of $\alpha$ and $\beta$ may intersect. Output: Is there a finite structure which satisfies $\alpha\land\beta$ such that the restriction of the structure to the vocabulary of $\alpha$ has bounded tree-width? (The tree-width of the desired structure is not bounded.) As a consequence, we prove the decidability of the satisfiability problem by a finite structure of bounded tree-width of a logic extending monadic second order logic with linear cardinality constraints of the form $|X_{1}|+\cdots+|X_{r}|<|Y_{1}|+\cdots+|Y_{s}|$, where the $X_{i}$ and $Y_{j}$ are monadic second order variables. We prove the decidability of a similar extension of WS1S.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.