Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MSPKmerCounter: A Fast and Memory Efficient Approach for K-mer Counting (1505.06550v1)

Published 25 May 2015 in q-bio.GN, cs.CE, and cs.DS

Abstract: A major challenge in next-generation genome sequencing (NGS) is to assemble massive overlapping short reads that are randomly sampled from DNA fragments. To complete assembling, one needs to finish a fundamental task in many leading assembly algorithms: counting the number of occurrences of k-mers (length-k substrings in sequences). The counting results are critical for many components in assembly (e.g. variants detection and read error correction). For large genomes, the k-mer counting task can easily consume a huge amount of memory, making it impossible for large-scale parallel assembly on commodity servers. In this paper, we develop MSPKmerCounter, a disk-based approach, to efficiently perform k-mer counting for large genomes using a small amount of memory. Our approach is based on a novel technique called Minimum Substring Partitioning (MSP). MSP breaks short reads into multiple disjoint partitions such that each partition can be loaded into memory and processed individually. By leveraging the overlaps among the k-mers derived from the same short read, MSP can achieve astonishing compression ratio so that the I/O cost can be significantly reduced. For the task of k-mer counting, MSPKmerCounter offers a very fast and memory-efficient solution. Experiment results on large real-life short reads data sets demonstrate that MSPKmerCounter can achieve better overall performance than state-of-the-art k-mer counting approaches. MSPKmerCounter is available at http://www.cs.ucsb.edu/~yangli/MSPKmerCounter

Citations (53)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com