Papers
Topics
Authors
Recent
2000 character limit reached

Deep Speaker Vectors for Semi Text-independent Speaker Verification (1505.06427v1)

Published 24 May 2015 in cs.CL, cs.LG, and cs.NE

Abstract: Recent research shows that deep neural networks (DNNs) can be used to extract deep speaker vectors (d-vectors) that preserve speaker characteristics and can be used in speaker verification. This new method has been tested on text-dependent speaker verification tasks, and improvement was reported when combined with the conventional i-vector method. This paper extends the d-vector approach to semi text-independent speaker verification tasks, i.e., the text of the speech is in a limited set of short phrases. We explore various settings of the DNN structure used for d-vector extraction, and present a phone-dependent training which employs the posterior features obtained from an ASR system. The experimental results show that it is possible to apply d-vectors on semi text-independent speaker recognition, and the phone-dependent training improves system performance.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.