Deep Speaker Vectors for Semi Text-independent Speaker Verification (1505.06427v1)
Abstract: Recent research shows that deep neural networks (DNNs) can be used to extract deep speaker vectors (d-vectors) that preserve speaker characteristics and can be used in speaker verification. This new method has been tested on text-dependent speaker verification tasks, and improvement was reported when combined with the conventional i-vector method. This paper extends the d-vector approach to semi text-independent speaker verification tasks, i.e., the text of the speech is in a limited set of short phrases. We explore various settings of the DNN structure used for d-vector extraction, and present a phone-dependent training which employs the posterior features obtained from an ASR system. The experimental results show that it is possible to apply d-vectors on semi text-independent speaker recognition, and the phone-dependent training improves system performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.