Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

A Bounded-error Quantum Polynomial Time Algorithm for Two Graph Bisection Problems (1505.06284v1)

Published 23 May 2015 in quant-ph, cs.CC, and cs.DS

Abstract: The aim of the paper is to propose a bounded-error quantum polynomial time (BQP) algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $O(m2)$ for a graph with $m$ edges and in the worst case runs in $O(n4)$ for a dense graph with $n$ vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $1-\epsilon$ for small $\epsilon>0$ using a polynomial space resources.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)