Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Exposing ambiguities in a relation-extraction gold standard with crowdsourcing (1505.06256v1)

Published 23 May 2015 in cs.CL and q-bio.QM

Abstract: Semantic relation extraction is one of the frontiers of biomedical natural language processing research. Gold standards are key tools for advancing this research. It is challenging to generate these standards because of the high cost of expert time and the difficulty in establishing agreement between annotators. We implemented and evaluated a microtask crowdsourcing approach that can produce a gold standard for extracting drug-disease relations. The aggregated crowd judgment agreed with expert annotations from a pre-existing corpus on 43 of 60 sentences tested. The levels of crowd agreement varied in a similar manner to the levels of agreement among the original expert annotators. This work rein-forces the power of crowdsourcing in the process of assembling gold standards for relation extraction. Further, it high-lights the importance of exposing the levels of agreement between human annotators, expert or crowd, in gold standard corpora as these are reproducible signals indicating ambiguities in the data or in the annotation guidelines.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.