Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Five-list-coloring graphs on surfaces II. A linear bound for critical graphs in a disk (1505.05927v1)

Published 22 May 2015 in math.CO and cs.DM

Abstract: Let $G$ be a plane graph with outer cycle $C$ and let $(L(v):v\in V(G))$ be a family of sets such that $|L(v)|\ge 5$ for every $v\in V(G)$. By an $L$-coloring of a subgraph $J$ of $G$ we mean a (proper) coloring $\phi$ of $J$ such that $\phi(v)\in L(v)$ for every vertex $v$ of $J$. We prove a conjecture of Dvorak et al. that if $H$ is a minimal subgraph of $G$ such that $C$ is a subgraph of $H$ and every $L$-coloring of $C$ that extends to an $L$-coloring of $H$ also extends to an $L$-coloring of $G$, then $|V(H)|\le 19|V(C)|$. This is a lemma that plays an important role in subsequent papers, because it motivates the study of graphs embedded in surfaces that satisfy an isoperimetric inequality suggested by this result. Such study turned out to be quite profitable for the subject of list coloring graphs on surfaces.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.