Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Character-level Chinese Writer Identification using Path Signature Feature, DropStroke and Deep CNN (1505.04922v1)

Published 19 May 2015 in cs.CV

Abstract: Most existing online writer-identification systems require that the text content is supplied in advance and rely on separately designed features and classifiers. The identifications are based on lines of text, entire paragraphs, or entire documents; however, these materials are not always available. In this paper, we introduce a path-signature feature to an end-to-end text-independent writer-identification system with a deep convolutional neural network (DCNN). Because deep models require a considerable amount of data to achieve good performance, we propose a data-augmentation method named DropStroke to enrich personal handwriting. Experiments were conducted on online handwritten Chinese characters from the CASIA-OLHWDB1.0 dataset, which consists of 3,866 classes from 420 writers. For each writer, we only used 200 samples for training and the remaining 3,666. The results reveal that the path-signature feature is useful for writer identification, and the proposed DropStroke technique enhances the generalization and significantly improves performance.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.