Emergent Mind

Simple regret for infinitely many armed bandits

(1505.04627)
Published May 18, 2015 in cs.LG and stat.ML

Abstract

We consider a stochastic bandit problem with infinitely many arms. In this setting, the learner has no chance of trying all the arms even once and has to dedicate its limited number of samples only to a certain number of arms. All previous algorithms for this setting were designed for minimizing the cumulative regret of the learner. In this paper, we propose an algorithm aiming at minimizing the simple regret. As in the cumulative regret setting of infinitely many armed bandits, the rate of the simple regret will depend on a parameter $\beta$ characterizing the distribution of the near-optimal arms. We prove that depending on $\beta$, our algorithm is minimax optimal either up to a multiplicative constant or up to a $\log(n)$ factor. We also provide extensions to several important cases: when $\beta$ is unknown, in a natural setting where the near-optimal arms have a small variance, and in the case of unknown time horizon.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.