Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Joint Representation Classification for Collective Face Recognition (1505.04617v1)

Published 18 May 2015 in cs.CV and math.OC

Abstract: Sparse representation based classification (SRC) is popularly used in many applications such as face recognition, and implemented in two steps: representation coding and classification. For a given set of testing images, SRC codes every image over the base images as a sparse representation then classifies it to the class with the least representation error. This scheme utilizes an individual representation rather than the collective one to classify such a set of images, doing so obviously ignores the correlation among the given images. In this paper, a joint representation classification (JRC) for collective face recognition is proposed. JRC takes the correlation of multiple images as well as a single representation into account. Under the assumption that the given face images are generally related to each other, JRC codes all the testing images over the base images simultaneously to facilitate recognition. To this end, the testing inputs are aligned into a matrix and the joint representation coding is formulated to a generalized $l_{2,q}-l_{2,p}$-minimization problem. To uniformly solve the induced optimization problems for any $q\in[1,2]$ and $p\in (0,2]$, an iterative quadratic method (IQM) is developed. IQM is proved to be a strict descent algorithm with convergence to the optimal solution. Moreover, a more practical IQM is proposed for large-scale case. Experimental results on three public databases show that the JRC with practical IQM no only saves much computational cost but also achieves better performance in collective face recognition than the state-of-the-arts.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.