Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Analysis and perturbation of degree correlation in complex networks (1505.04394v2)

Published 17 May 2015 in physics.soc-ph and cs.SI

Abstract: Degree correlation is an important topological property common to many real-world networks. In this paper, the statistical measures for characterizing the degree correlation in networks are investigated analytically. We give an exact proof of the consistency for the statistical measures, reveal the general linear relation in the degree correlation, which provide a simple and interesting perspective on the analysis of the degree correlation in complex networks. By using the general linear analysis, we investigate the perturbation of the degree correlation in complex networks caused by the addition of few nodes and the rich club. The results show that the assortativity of homogeneous networks such as the ER graphs is easily to be affected strongly by the simple structural changes, while it has only slight variation for heterogeneous networks with broad degree distribution such as the scale-free networks. Clearly, the homogeneous networks are more sensitive for the perturbation than the heterogeneous networks.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.