Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Shrinkage degree in $L_2$-re-scale boosting for regression (1505.04369v1)

Published 17 May 2015 in cs.LG

Abstract: Re-scale boosting (RBoosting) is a variant of boosting which can essentially improve the generalization performance of boosting learning. The key feature of RBoosting lies in introducing a shrinkage degree to re-scale the ensemble estimate in each gradient-descent step. Thus, the shrinkage degree determines the performance of RBoosting. The aim of this paper is to develop a concrete analysis concerning how to determine the shrinkage degree in $L_2$-RBoosting. We propose two feasible ways to select the shrinkage degree. The first one is to parameterize the shrinkage degree and the other one is to develope a data-driven approach of it. After rigorously analyzing the importance of the shrinkage degree in $L_2$-RBoosting learning, we compare the pros and cons of the proposed methods. We find that although these approaches can reach the same learning rates, the structure of the final estimate of the parameterized approach is better, which sometimes yields a better generalization capability when the number of sample is finite. With this, we recommend to parameterize the shrinkage degree of $L_2$-RBoosting. To this end, we present an adaptive parameter-selection strategy for shrinkage degree and verify its feasibility through both theoretical analysis and numerical verification. The obtained results enhance the understanding of RBoosting and further give guidance on how to use $L_2$-RBoosting for regression tasks.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.