Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Schur Complement based domain decomposition preconditioners with Low-rank corrections (1505.04340v1)

Published 16 May 2015 in cs.NA and math.NA

Abstract: This paper introduces a robust preconditioner for general sparse symmetric matrices, that is based on low-rank approximations of the Schur complement in a Domain Decomposition (DD) framework. In this "Schur Low Rank" (SLR) preconditioning approach, the coefficient matrix is first decoupled by DD, and then a low-rank correction is exploited to compute an approximate inverse of the Schur complement associated with the interface points. The method avoids explicit formation of the Schur complement matrix. We show the feasibility of this strategy for a model problem, and conduct a detailed spectral analysis for the relationship between the low-rank correction and the quality of the preconditioning. Numerical experiments on general matrices illustrate the robustness and efficiency of the proposed approach.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.