Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

An Analysis of Active Learning With Uniform Feature Noise (1505.04215v1)

Published 15 May 2015 in stat.ML, cs.AI, cs.LG, math.ST, and stat.TH

Abstract: In active learning, the user sequentially chooses values for feature $X$ and an oracle returns the corresponding label $Y$. In this paper, we consider the effect of feature noise in active learning, which could arise either because $X$ itself is being measured, or it is corrupted in transmission to the oracle, or the oracle returns the label of a noisy version of the query point. In statistics, feature noise is known as "errors in variables" and has been studied extensively in non-active settings. However, the effect of feature noise in active learning has not been studied before. We consider the well-known Berkson errors-in-variables model with additive uniform noise of width $\sigma$. Our simple but revealing setting is that of one-dimensional binary classification setting where the goal is to learn a threshold (point where the probability of a $+$ label crosses half). We deal with regression functions that are antisymmetric in a region of size $\sigma$ around the threshold and also satisfy Tsybakov's margin condition around the threshold. We prove minimax lower and upper bounds which demonstrate that when $\sigma$ is smaller than the minimiax active/passive noiseless error derived in \cite{CN07}, then noise has no effect on the rates and one achieves the same noiseless rates. For larger $\sigma$, the \textit{unflattening} of the regression function on convolution with uniform noise, along with its local antisymmetry around the threshold, together yield a behaviour where noise \textit{appears} to be beneficial. Our key result is that active learning can buy significant improvement over a passive strategy even in the presence of feature noise.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.