Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Counting Branches in Trees Using Games (1505.03852v1)

Published 14 May 2015 in cs.FL

Abstract: We study finite automata running over infinite binary trees. A run of such an automaton is usually said to be accepting if all its branches are accepting. In this article, we relax the notion of accepting run by allowing a certain quantity of rejecting branches. More precisely we study the following criteria for a run to be accepting: - it contains at most finitely (resp countably) many rejecting branches; - it contains infinitely (resp uncountably) many accepting branches; - the set of accepting branches is topologically "big". In all situations we provide a simple acceptance game that later permits to prove that the languages accepted by automata with cardinality constraints are always $\omega$-regular. In the case (ii) where one counts accepting branches it leads to new proofs (without appealing to logic) of an old result of Beauquier and Niwinski.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.