Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-scale Volumes for Deep Object Detection and Localization (1505.03597v2)

Published 14 May 2015 in cs.CV

Abstract: This study aims to analyze the benefits of improved multi-scale reasoning for object detection and localization with deep convolutional neural networks. To that end, an efficient and general object detection framework which operates on scale volumes of a deep feature pyramid is proposed. In contrast to the proposed approach, most current state-of-the-art object detectors operate on a single-scale in training, while testing involves independent evaluation across scales. One benefit of the proposed approach is in better capturing of multi-scale contextual information, resulting in significant gains in both detection performance and localization quality of objects on the PASCAL VOC dataset and a multi-view highway vehicles dataset. The joint detection and localization scale-specific models are shown to especially benefit detection of challenging object categories which exhibit large scale variation as well as detection of small objects.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.