Papers
Topics
Authors
Recent
2000 character limit reached

Zero-One Law for Regular Languages and Semigroups with Zero (1505.03343v3)

Published 13 May 2015 in cs.FL

Abstract: A regular language has the zero-one law if its asymptotic density converges to either zero or one. We prove that the class of all zero-one languages is closed under Boolean operations and quotients. Moreover, we prove that a regular language has the zero-one law if and only if its syntactic monoid has a zero element. Our proof gives both algebraic and automata characterisation of the zero-one law for regular languages, and it leads the following two corollaries: (i) There is an O(n log n) algorithm for testing whether a given regular language has the zero-one law. (ii) The Boolean closure of existential first-order logic over finite words has the zero-one law.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.