Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Near-optimal bounds on bounded-round quantum communication complexity of disjointness (1505.03110v1)

Published 12 May 2015 in cs.CC, cs.IT, math.IT, and quant-ph

Abstract: We prove a near optimal round-communication tradeoff for the two-party quantum communication complexity of disjointness. For protocols with $r$ rounds, we prove a lower bound of $\tilde{\Omega}(n/r + r)$ on the communication required for computing disjointness of input size $n$, which is optimal up to logarithmic factors. The previous best lower bound was $\Omega(n/r2 + r)$ due to Jain, Radhakrishnan and Sen [JRS03]. Along the way, we develop several tools for quantum information complexity, one of which is a lower bound for quantum information complexity in terms of the generalized discrepancy method. As a corollary, we get that the quantum communication complexity of any boolean function $f$ is at most $2{O(QIC(f))}$, where $QIC(f)$ is the prior-free quantum information complexity of $f$ (with error $1/3$).

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.