Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ontology Based Document Clustering Using MapReduce (1505.02891v1)

Published 12 May 2015 in cs.DB and cs.IR

Abstract: Nowadays, document clustering is considered as a data intensive task due to the dramatic, fast increase in the number of available documents. Nevertheless, the features that represent those documents are also too large. The most common method for representing documents is the vector space model, which represents document features as a bag of words and does not represent semantic relations between words. In this paper we introduce a distributed implementation for the bisecting k-means using MapReduce programming model. The aim behind our proposed implementation is to solve the problem of clustering intensive data documents. In addition, we propose integrating the WordNet ontology with bisecting k-means in order to utilize the semantic relations between words to enhance document clustering results. Our presented experimental results show that using lexical categories for nouns only enhances internal evaluation measures of document clustering; and decreases the documents features from thousands to tens features. Our experiments were conducted using Amazon Elastic MapReduce to deploy the Bisecting k-means algorithm.

Citations (14)

Summary

We haven't generated a summary for this paper yet.