Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Ontology Based Document Clustering Using MapReduce (1505.02891v1)

Published 12 May 2015 in cs.DB and cs.IR

Abstract: Nowadays, document clustering is considered as a data intensive task due to the dramatic, fast increase in the number of available documents. Nevertheless, the features that represent those documents are also too large. The most common method for representing documents is the vector space model, which represents document features as a bag of words and does not represent semantic relations between words. In this paper we introduce a distributed implementation for the bisecting k-means using MapReduce programming model. The aim behind our proposed implementation is to solve the problem of clustering intensive data documents. In addition, we propose integrating the WordNet ontology with bisecting k-means in order to utilize the semantic relations between words to enhance document clustering results. Our presented experimental results show that using lexical categories for nouns only enhances internal evaluation measures of document clustering; and decreases the documents features from thousands to tens features. Our experiments were conducted using Amazon Elastic MapReduce to deploy the Bisecting k-means algorithm.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.