Lyapunov-based Stochastic Nonlinear Model Predictive Control: Shaping the State Probability Density Functions (1505.02871v1)
Abstract: Stochastic uncertainties in complex dynamical systems lead to variability of system states, which can in turn degrade the closed-loop performance. This paper presents a stochastic model predictive control approach for a class of nonlinear systems with unbounded stochastic uncertainties. The control approach aims to shape probability density function of the stochastic states, while satisfying input and joint state chance constraints. Closed-loop stability is ensured by designing a stability constraint in terms of a stochastic control Lyapunov function, which explicitly characterizes stability in a probabilistic sense. The Fokker-Planck equation is used for describing the dynamic evolution of the states' probability density functions. Complete characterization of probability density functions using the Fokker-Planck equation allows for shaping the states' density functions as well as direct computation of joint state chance constraints. The closed-loop performance of the stochastic control approach is demonstrated using a continuous stirred-tank reactor.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.