Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dominating induced matchings in graphs containing no long claw (1505.02558v1)

Published 11 May 2015 in cs.DM, cs.DS, and math.CO

Abstract: An induced matching $M$ in a graph $G$ is dominating if every edge not in $M$ shares exactly one vertex with an edge in $M$. The dominating induced matching problem (also known as efficient edge domination) asks whether a graph $G$ contains a dominating induced matching. This problem is generally NP-complete, but polynomial-time solvable for graphs with some special properties. In particular, it is solvable in polynomial time for claw-free graphs. In the present paper, we study this problem for graphs containing no long claw, i.e. no induced subgraph obtained from the claw by subdividing each of its edges exactly once. To solve the problem in this class, we reduce it to the following question: given a graph $G$ and a subset of its vertices, does $G$ contain a matching saturating all vertices of the subset? We show that this question can be answered in polynomial time, thus providing a polynomial-time algorithm to solve the dominating induced matching problem for graphs containing no long claw.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.