Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dominating induced matchings in graphs containing no long claw (1505.02558v1)

Published 11 May 2015 in cs.DM, cs.DS, and math.CO

Abstract: An induced matching $M$ in a graph $G$ is dominating if every edge not in $M$ shares exactly one vertex with an edge in $M$. The dominating induced matching problem (also known as efficient edge domination) asks whether a graph $G$ contains a dominating induced matching. This problem is generally NP-complete, but polynomial-time solvable for graphs with some special properties. In particular, it is solvable in polynomial time for claw-free graphs. In the present paper, we study this problem for graphs containing no long claw, i.e. no induced subgraph obtained from the claw by subdividing each of its edges exactly once. To solve the problem in this class, we reduce it to the following question: given a graph $G$ and a subset of its vertices, does $G$ contain a matching saturating all vertices of the subset? We show that this question can be answered in polynomial time, thus providing a polynomial-time algorithm to solve the dominating induced matching problem for graphs containing no long claw.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.