Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Probabilistic Belief Embedding for Knowledge Base Completion (1505.02433v4)

Published 10 May 2015 in cs.AI

Abstract: This paper contributes a novel embedding model which measures the probability of each belief $\langle h,r,t,m\rangle$ in a large-scale knowledge repository via simultaneously learning distributed representations for entities ($h$ and $t$), relations ($r$), and the words in relation mentions ($m$). It facilitates knowledge completion by means of simple vector operations to discover new beliefs. Given an imperfect belief, we can not only infer the missing entities, predict the unknown relations, but also tell the plausibility of the belief, just leveraging the learnt embeddings of remaining evidences. To demonstrate the scalability and the effectiveness of our model, we conduct experiments on several large-scale repositories which contain millions of beliefs from WordNet, Freebase and NELL, and compare it with other cutting-edge approaches via competing the performances assessed by the tasks of entity inference, relation prediction and triplet classification with respective metrics. Extensive experimental results show that the proposed model outperforms the state-of-the-arts with significant improvements.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.