Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bounded-Distortion Metric Learning (1505.02377v1)

Published 10 May 2015 in cs.LG

Abstract: Metric learning aims to embed one metric space into another to benefit tasks like classification and clustering. Although a greatly distorted metric space has a high degree of freedom to fit training data, it is prone to overfitting and numerical inaccuracy. This paper presents {\it bounded-distortion metric learning} (BDML), a new metric learning framework which amounts to finding an optimal Mahalanobis metric space with a bounded-distortion constraint. An efficient solver based on the multiplicative weights update method is proposed. Moreover, we generalize BDML to pseudo-metric learning and devise the semidefinite relaxation and a randomized algorithm to approximately solve it. We further provide theoretical analysis to show that distortion is a key ingredient for stability and generalization ability of our BDML algorithm. Extensive experiments on several benchmark datasets yield promising results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.