Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Data Attacks on Power Grids: Leveraging Detection (1505.01881v1)

Published 7 May 2015 in cs.CR and cs.SY

Abstract: Data attacks on meter measurements in the power grid can lead to errors in state estimation. This paper presents a new data attack model where an adversary produces changes in state estimation despite failing bad-data detection checks. The adversary achieves its objective by making the estimator incorrectly identify correct measurements as bad data. The proposed attack regime's significance lies in reducing the minimum sizes of successful attacks to more than half of that of undetectable data attacks. Additionally, the attack model is able to construct attacks on systems that are resilient to undetectable attacks. The conditions governing a successful data attack of the proposed model are presented along with guarantees on its performance. The complexity of constructing an optimal attack is discussed and two polynomial time approximate algorithms for attack vector construction are developed. The performance of the proposed algorithms and efficacy of the hidden attack model are demonstrated through simulations on IEEE test systems.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.