Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Kernelization via Sampling with Applications to Dynamic Graph Streams (1505.01731v1)

Published 7 May 2015 in cs.DS

Abstract: In this paper we present a simple but powerful subgraph sampling primitive that is applicable in a variety of computational models including dynamic graph streams (where the input graph is defined by a sequence of edge/hyperedge insertions and deletions) and distributed systems such as MapReduce. In the case of dynamic graph streams, we use this primitive to prove the following results: -- Matching: First, there exists an $\tilde{O}(k2)$ space algorithm that returns an exact maximum matching on the assumption the cardinality is at most $k$. The best previous algorithm used $\tilde{O}(kn)$ space where $n$ is the number of vertices in the graph and we prove our result is optimal up to logarithmic factors. Our algorithm has $\tilde{O}(1)$ update time. Second, there exists an $\tilde{O}(n2/\alpha3)$ space algorithm that returns an $\alpha$-approximation for matchings of arbitrary size. (Assadi et al. (2015) showed that this was optimal and independently and concurrently established the same upper bound.) We generalize both results for weighted matching. Third, there exists an $\tilde{O}(n{4/5})$ space algorithm that returns a constant approximation in graphs with bounded arboricity. -- Vertex Cover and Hitting Set: There exists an $\tilde{O}(kd)$ space algorithm that solves the minimum hitting set problem where $d$ is the cardinality of the input sets and $k$ is an upper bound on the size of the minimum hitting set. We prove this is optimal up to logarithmic factors. Our algorithm has $\tilde{O}(1)$ update time. The case $d=2$ corresponds to minimum vertex cover. Finally, we consider a larger family of parameterized problems (including $b$-matching, disjoint paths, vertex coloring among others) for which our subgraph sampling primitive yields fast, small-space dynamic graph stream algorithms. We then show lower bounds for natural problems outside this family.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube