Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Colouring graphs with constraints on connectivity (1505.01616v2)

Published 7 May 2015 in math.CO and cs.CC

Abstract: A graph $G$ has maximal local edge-connectivity $k$ if the maximum number of edge-disjoint paths between every pair of distinct vertices $x$ and $y$ is at most $k$. We prove Brooks-type theorems for $k$-connected graphs with maximal local edge-connectivity $k$, and for any graph with maximal local edge-connectivity 3. We also consider several related graph classes defined by constraints on connectivity. In particular, we show that there is a polynomial-time algorithm that, given a 3-connected graph $G$ with maximal local connectivity 3, outputs an optimal colouring for $G$. On the other hand, we prove, for $k \ge 3$, that $k$-colourability is NP-complete when restricted to minimally $k$-connected graphs, and 3-colourability is NP-complete when restricted to $(k-1)$-connected graphs with maximal local connectivity $k$. Finally, we consider a parameterization of $k$-colourability based on the number of vertices of degree at least $k+1$, and prove that, even when $k$ is part of the input, the corresponding parameterized problem is FPT.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.