Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Best-First and Depth-First Minimax Search in Practice (1505.01603v1)

Published 7 May 2015 in cs.AI

Abstract: Most practitioners use a variant of the Alpha-Beta algorithm, a simple depth-first pro- cedure, for searching minimax trees. SSS*, with its best-first search strategy, reportedly offers the potential for more efficient search. However, the complex formulation of the al- gorithm and its alleged excessive memory requirements preclude its use in practice. For two decades, the search efficiency of "smart" best-first SSS* has cast doubt on the effectiveness of "dumb" depth-first Alpha-Beta. This paper presents a simple framework for calling Alpha-Beta that allows us to create a variety of algorithms, including SSS* and DUAL*. In effect, we formulate a best-first algorithm using depth-first search. Expressed in this framework SSS* is just a special case of Alpha-Beta, solving all of the perceived drawbacks of the algorithm. In practice, Alpha-Beta variants typically evaluate less nodes than SSS*. A new instance of this framework, MTD(f), out-performs SSS* and NegaScout, the Alpha-Beta variant of choice by practitioners.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.