Papers
Topics
Authors
Recent
2000 character limit reached

An $O(n\log(n))$ Algorithm for Projecting Onto the Ordered Weighted $\ell_1$ Norm Ball (1505.00870v3)

Published 5 May 2015 in math.OC and cs.LG

Abstract: The ordered weighted $\ell_1$ (OWL) norm is a newly developed generalization of the Octogonal Shrinkage and Clustering Algorithm for Regression (OSCAR) norm. This norm has desirable statistical properties and can be used to perform simultaneous clustering and regression. In this paper, we show how to compute the projection of an $n$-dimensional vector onto the OWL norm ball in $O(n\log(n))$ operations. In addition, we illustrate the performance of our algorithm on a synthetic regression test.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.