n-Level Hypergraph Partitioning (1505.00693v1)
Abstract: We develop a multilevel algorithm for hypergraph partitioning that contracts the vertices one at a time and thus allows very high quality. This includes a rating function that avoids nonuniform vertex weights, an efficient "semi-dynamic" hypergraph data structure, a very fast coarsening algorithm, and two new local search algorithms. One is a $k$-way hypergraph adaptation of Fiduccia-Mattheyses local search and gives high quality at reasonable cost. The other is an adaptation of size-constrained label propagation to hypergraphs. Comparisons with hMetis and PaToH indicate that the new algorithm yields better quality over several benchmark sets and has a running time that is comparable to hMetis. Using label propagation local search is several times faster than hMetis and gives better quality than PaToH for a VLSI benchmark set.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.