Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

n-Level Hypergraph Partitioning (1505.00693v1)

Published 4 May 2015 in cs.DS

Abstract: We develop a multilevel algorithm for hypergraph partitioning that contracts the vertices one at a time and thus allows very high quality. This includes a rating function that avoids nonuniform vertex weights, an efficient "semi-dynamic" hypergraph data structure, a very fast coarsening algorithm, and two new local search algorithms. One is a $k$-way hypergraph adaptation of Fiduccia-Mattheyses local search and gives high quality at reasonable cost. The other is an adaptation of size-constrained label propagation to hypergraphs. Comparisons with hMetis and PaToH indicate that the new algorithm yields better quality over several benchmark sets and has a running time that is comparable to hMetis. Using label propagation local search is several times faster than hMetis and gives better quality than PaToH for a VLSI benchmark set.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.