Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

fastFM: A Library for Factorization Machines (1505.00641v3)

Published 4 May 2015 in cs.LG and cs.IR

Abstract: Factorization Machines (FM) are only used in a narrow range of applications and are not part of the standard toolbox of machine learning models. This is a pity, because even though FMs are recognized as being very successful for recommender system type applications they are a general model to deal with sparse and high dimensional features. Our Factorization Machine implementation provides easy access to many solvers and supports regression, classification and ranking tasks. Such an implementation simplifies the use of FM's for a wide field of applications. This implementation has the potential to improve our understanding of the FM model and drive new development.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.