Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explanation of Stagnation at Points that are not Local Optima in Particle Swarm Optimization by Potential Analysis (1504.08241v1)

Published 30 Apr 2015 in cs.AI

Abstract: Particle Swarm Optimization (PSO) is a nature-inspired meta-heuristic for solving continuous optimization problems. In the literature, the potential of the particles of swarm has been used to show that slightly modified PSO guarantees convergence to local optima. Here we show that under specific circumstances the unmodified PSO, even with swarm parameters known (from the literature) to be good, almost surely does not yield convergence to a local optimum is provided. This undesirable phenomenon is called stagnation. For this purpose, the particles' potential in each dimension is analyzed mathematically. Additionally, some reasonable assumptions on the behavior if the particles' potential are made. Depending on the objective function and, interestingly, the number of particles, the potential in some dimensions may decrease much faster than in other dimensions. Therefore, these dimensions lose relevance, i.e., the contribution of their entries to the decisions about attractor updates becomes insignificant and, with positive probability, they never regain relevance. If Brownian Motion is assumed to be an approximation of the time-dependent drop of potential, practical, i.e., large values for this probability are calculated. Finally, on chosen multidimensional polynomials of degree two, experiments are provided showing that the required circumstances occur quite frequently. Furthermore, experiments are provided showing that even when the very simple sphere function is processed the described stagnation phenomenon occurs. Consequently, unmodified PSO does not converge to any local optimum of the chosen functions for tested parameter settings.

Citations (11)

Summary

We haven't generated a summary for this paper yet.