Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A multi-class approach for ranking graph nodes: models and experiments with incomplete data (1504.07766v1)

Published 29 Apr 2015 in math.NA, cs.IR, and physics.soc-ph

Abstract: After the phenomenal success of the PageRank algorithm, many researchers have extended the PageRank approach to ranking graphs with richer structures beside the simple linkage structure. In some scenarios we have to deal with multi-parameters data where each node has additional features and there are relationships between such features. This paper stems from the need of a systematic approach when dealing with multi-parameter data. We propose models and ranking algorithms which can be used with little adjustments for a large variety of networks (bibliographic data, patent data, twitter and social data, healthcare data). In this paper we focus on several aspects which have not been addressed in the literature: (1) we propose different models for ranking multi-parameters data and a class of numerical algorithms for efficiently computing the ranking score of such models, (2) by analyzing the stability and convergence properties of the numerical schemes we tune a fast and stable technique for the ranking problem, (3) we consider the issue of the robustness of our models when data are incomplete. The comparison of the rank on the incomplete data with the rank on the full structure shows that our models compute consistent rankings whose correlation is up to 60% when just 10% of the links of the attributes are maintained suggesting the suitability of our model also when the data are incomplete.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.