Papers
Topics
Authors
Recent
2000 character limit reached

Dual Averaging on Compactly-Supported Distributions And Application to No-Regret Learning on a Continuum (1504.07720v1)

Published 29 Apr 2015 in cs.LG and math.OC

Abstract: We consider an online learning problem on a continuum. A decision maker is given a compact feasible set $S$, and is faced with the following sequential problem: at iteration~$t$, the decision maker chooses a distribution $x{(t)} \in \Delta(S)$, then a loss function $\ell{(t)} : S \to \mathbb{R}+$ is revealed, and the decision maker incurs expected loss $\langle \ell{(t)}, x{(t)} \rangle = \mathbb{E}{s \sim x{(t)}} \ell{(t)}(s)$. We view the problem as an online convex optimization problem on the space $\Delta(S)$ of Lebesgue-continnuous distributions on $S$. We prove a general regret bound for the Dual Averaging method on $L2(S)$, then prove that dual averaging with $\omega$-potentials (a class of strongly convex regularizers) achieves sublinear regret when $S$ is uniformly fat (a condition weaker than convexity).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.