Papers
Topics
Authors
Recent
2000 character limit reached

Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood (1504.07468v3)

Published 28 Apr 2015 in stat.ML

Abstract: We consider the problem of discriminative factor analysis for data that are in general non-Gaussian. A Bayesian model based on the ranks of the data is proposed. We first introduce a new {\em max-margin} version of the rank-likelihood. A discriminative factor model is then developed, integrating the max-margin rank-likelihood and (linear) Bayesian support vector machines, which are also built on the max-margin principle. The discriminative factor model is further extended to the {\em nonlinear} case through mixtures of local linear classifiers, via Dirichlet processes. Fully local conjugacy of the model yields efficient inference with both Markov Chain Monte Carlo and variational Bayes approaches. Extensive experiments on benchmark and real data demonstrate superior performance of the proposed model and its potential for applications in computational biology.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.