Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

QoS-Based Pricing and Scheduling of Batch Jobs in OpenStack Clouds (1504.07283v1)

Published 27 Apr 2015 in cs.DC

Abstract: The current Cloud infrastructure services (IaaS) market employs a resource-based selling model: customers rent nodes from the provider and pay per-node per-unit-time. This selling model places the burden upon customers to predict their job resource requirements and durations. Inaccurate prediction by customers can result in over-provisioning of resources, or under-provisioning and poor job performance. Thanks to improved resource virtualization and multi-tenant performance isolation, as well as common frameworks for batch jobs, such as MapReduce, Cloud providers can predict job completion times more accurately. We offer a new definition of QoS-levels in terms of job completion times and we present a new QoS-based selling mechanism for batch jobs in a multi-tenant OpenStack cluster. Our experiments show that the QoS-based solution yields up to 40% improvement over the revenue of more standard selling mechanisms based on a fixed per-node price across various demand and supply conditions in a 240-VCPU OpenStack cluster.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.