Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Concept Extraction to Identify Adverse Drug Reactions in Medical Forums: A Comparison of Algorithms (1504.06936v1)

Published 27 Apr 2015 in cs.AI, cs.CL, and cs.IR

Abstract: Social media is becoming an increasingly important source of information to complement traditional pharmacovigilance methods. In order to identify signals of potential adverse drug reactions, it is necessary to first identify medical concepts in the social media text. Most of the existing studies use dictionary-based methods which are not evaluated independently from the overall signal detection task. We compare different approaches to automatically identify and normalise medical concepts in consumer reviews in medical forums. Specifically, we implement several dictionary-based methods popular in the relevant literature, as well as a method we suggest based on a state-of-the-art machine learning method for entity recognition. MetaMap, a popular biomedical concept extraction tool, is used as a baseline. Our evaluations were performed in a controlled setting on a common corpus which is a collection of medical forum posts annotated with concepts and linked to controlled vocabularies such as MedDRA and SNOMED CT. To our knowledge, our study is the first to systematically examine the effect of popular concept extraction methods in the area of signal detection for adverse reactions. We show that the choice of algorithm or controlled vocabulary has a significant impact on concept extraction, which will impact the overall signal detection process. We also show that our proposed machine learning approach significantly outperforms all the other methods in identification of both adverse reactions and drugs, even when trained with a relatively small set of annotated text.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.