Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Motion Planning for Multi-Link Robots by Implicit Configuration-Space Tiling (1504.06631v3)

Published 24 Apr 2015 in cs.RO

Abstract: We study the problem of motion-planning for free-flying multi-link robots and develop a sampling-based algorithm that is specifically tailored for the task. Our work is based on the simple observation that the set of configurations for which the robot is self-collision free is independent of the obstacles or of the exact placement of the robot. This allows to eliminate the need to perform costly self-collision checks online when solving motion-planning problems, assuming some offline preprocessing. In particular, given a specific robot type our algorithm precomputes a tiling roadmap, which efficiently and implicitly encodes the self-collision free (sub-)space over the entire configuration space, where the latter can be infinite for that matter. To answer any query, in any given scenario, we traverse the tiling roadmap while only testing for collisions with obstacles. Our algorithm suggests more flexibility than the prevailing paradigm in which a precomputed roadmap depends both on the robot and on the scenario at hand. We show through various simulations the effectiveness of this approach on open and closed-chain multi-link robots, where in some settings our algorithm is more than fifty times faster than the state-of-the-art.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.