Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Predicting sports scoring dynamics with restoration and anti-persistence (1504.05872v1)

Published 22 Apr 2015 in physics.data-an, cs.CY, and stat.AP

Abstract: Professional team sports provide an excellent domain for studying the dynamics of social competitions. These games are constructed with simple, well-defined rules and payoffs that admit a high-dimensional set of possible actions and nontrivial scoring dynamics. The resulting gameplay and efforts to predict its evolution are the object of great interest to both sports professionals and enthusiasts. In this paper, we consider two online prediction problems for team sports:~given a partially observed game Who will score next? and ultimately Who will win? We present novel interpretable generative models of within-game scoring that allow for dependence on lead size (restoration) and on the last team to score (anti-persistence). We then apply these models to comprehensive within-game scoring data for four sports leagues over a ten year period. By assessing these models' relative goodness-of-fit we shed new light on the underlying mechanisms driving the observed scoring dynamics of each sport. Furthermore, in both predictive tasks, the performance of our models consistently outperforms baselines models, and our models make quantitative assessments of the latent team skill, over time.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)