Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Iteratively Reweighted $\ell_1$ Approaches to Sparse Composite Regularization (1504.05110v4)

Published 20 Apr 2015 in cs.IT and math.IT

Abstract: Motivated by the observation that a given signal $\boldsymbol{x}$ admits sparse representations in multiple dictionaries $\boldsymbol{\Psi}_d$ but with varying levels of sparsity across dictionaries, we propose two new algorithms for the reconstruction of (approximately) sparse signals from noisy linear measurements. Our first algorithm, Co-L1, extends the well-known lasso algorithm from the L1 regularizer $|\boldsymbol{\Psi x}|_1$ to composite regularizers of the form $\sum_d \lambda_d |\boldsymbol{\Psi}_d \boldsymbol{x}|_1$ while self-adjusting the regularization weights $\lambda_d$. Our second algorithm, Co-IRW-L1, extends the well-known iteratively reweighted L1 algorithm to the same family of composite regularizers. We provide several interpretations of both algorithms: i) majorization-minimization (MM) applied to a non-convex log-sum-type penalty, ii) MM applied to an approximate $\ell_0$-type penalty, iii) MM applied to Bayesian MAP inference under a particular hierarchical prior, and iv) variational expectation-maximization (VEM) under a particular prior with deterministic unknown parameters. A detailed numerical study suggests that our proposed algorithms yield significantly improved recovery SNR when compared to their non-composite L1 and IRW-L1 counterparts.

Citations (56)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.