Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Communication with Contextual Uncertainty (1504.04813v2)

Published 19 Apr 2015 in cs.CC, cs.IT, and math.IT

Abstract: We introduce a simple model illustrating the role of context in communication and the challenge posed by uncertainty of knowledge of context. We consider a variant of distributional communication complexity where Alice gets some information $x$ and Bob gets $y$, where $(x,y)$ is drawn from a known distribution, and Bob wishes to compute some function $g(x,y)$ (with high probability over $(x,y)$). In our variant, Alice does not know $g$, but only knows some function $f$ which is an approximation of $g$. Thus, the function being computed forms the context for the communication, and knowing it imperfectly models (mild) uncertainty in this context. A naive solution would be for Alice and Bob to first agree on some common function $h$ that is close to both $f$ and $g$ and then use a protocol for $h$ to compute $h(x,y)$. We show that any such agreement leads to a large overhead in communication ruling out such a universal solution. In contrast, we show that if $g$ has a one-way communication protocol with complexity $k$ in the standard setting, then it has a communication protocol with complexity $O(k \cdot (1+I))$ in the uncertain setting, where $I$ denotes the mutual information between $x$ and $y$. In the particular case where the input distribution is a product distribution, the protocol in the uncertain setting only incurs a constant factor blow-up in communication and error. Furthermore, we show that the dependence on the mutual information $I$ is required. Namely, we construct a class of functions along with a non-product distribution over $(x,y)$ for which the communication complexity is a single bit in the standard setting but at least $\Omega(\sqrt{n})$ bits in the uncertain setting.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.