Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Pseudorandomness for Read-Once, Constant-Depth Circuits (1504.04675v2)

Published 18 Apr 2015 in cs.CC

Abstract: For Boolean functions computed by read-once, depth-$D$ circuits with unbounded fan-in over the de Morgan basis, we present an explicit pseudorandom generator with seed length $\tilde{O}(\log{D+1} n)$. The previous best seed length known for this model was $\tilde{O}(\log{D+4} n)$, obtained by Trevisan and Xue (CCC 13) for all of $AC^0$ (not just read-once). Our work makes use of Fourier analytic techniques for pseudorandomness introduced by Reingold, Steinke, and Vadhan (RANDOM13) to show that the generator of Gopalan et al. (FOCS `12) fools read-once $AC0$. To this end, we prove a new Fourier growth bound for read-once circuits, namely that for every $F: {0,1}n\to{0,1}$ computed by a read-once, depth-$D$ circuit, \begin{equation*}\sum_{s\subseteq[n], |s|=k}|\hat{F}[s]|\le O(\log{D-1}n)k,\end{equation*} where $\hat{F}$ denotes the Fourier transform of $F$ over $\mathbb{Z}n_2$.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.