Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Faster FPTAS for the Unbounded Knapsack Problem (1504.04650v2)

Published 17 Apr 2015 in cs.DS

Abstract: The Unbounded Knapsack Problem (UKP) is a well-known variant of the famous 0-1 Knapsack Problem (0-1 KP). In contrast to 0-1 KP, an arbitrary number of copies of every item can be taken in UKP. Since UKP is NP-hard, fully polynomial time approximation schemes (FPTAS) are of great interest. Such algorithms find a solution arbitrarily close to the optimum $\mathrm{OPT}(I)$, i.e. of value at least $(1-\varepsilon) \mathrm{OPT}(I)$ for $\varepsilon > 0$, and have a running time polynomial in the input length and $\frac{1}{\varepsilon}$. For over thirty years, the best FPTAS was due to Lawler with a running time in $O(n + \frac{1}{\varepsilon3})$ and a space complexity in $O(n + \frac{1}{\varepsilon2})$, where $n$ is the number of knapsack items. We present an improved FPTAS with a running time in $O(n + \frac{1}{\varepsilon2} \log3 \frac{1}{\varepsilon})$ and a space bound in $O(n + \frac{1}{\varepsilon} \log2 \frac{1}{\varepsilon})$. This directly improves the running time of the fastest known approximation schemes for Bin Packing and Strip Packing, which have to approximately solve UKP instances as subproblems.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.