Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robustness of power systems under a democratic fiber bundle-like model (1504.03728v1)

Published 14 Apr 2015 in physics.soc-ph, cs.SI, and physics.data-an

Abstract: We consider a power system with $N$ transmission lines whose initial loads (i.e., power flows) $L_1, \ldots, L_N$ are independent and identically distributed with $P_L(x)$. The capacity $C_i$ defines the maximum flow allowed on line $i$, and is assumed to be given by $C_i=(1+\alpha)L_i$, with $\alpha>0$. We study the robustness of this power system against random attacks (or, failures) that target a $p$-{\em fraction} of the lines, under a democratic fiber bundle-like model. Namely, when a line fails, the load it was carrying is redistributed equally among the remaining lines. Our contributions are as follows: i) we show analytically that the final breakdown of the system always takes place through a first-order transition at the critical attack size $p{\star}=1-\frac{E[L]}{\max{P(L>x)(\alpha x + E[L ~|~ L>x])}}~~~$; ii) we derive conditions on the distribution $P_L(x)$ for which the first order break down of the system occurs abruptly without any preceding diverging rate of failure; iii) we provide a detailed analysis of the robustness of the system under three specific load distributions: Uniform, Pareto, and Weibull, showing that with the minimum load $L_{\textrm{min}}$ and mean load $E[L]$ fixed, Pareto distribution is the worst (in terms of robustness) among the three, whereas Weibull distribution is the best with shape parameter selected relatively large; iv) we provide numerical results that confirm our mean-field analysis; and v) we show that $p{\star}$ is maximized when the load distribution is a Dirac delta function centered at $E[L]$, i.e., when all lines carry the same load; we also show that optimal $p{\star}$ equals $\frac{\alpha}{\alpha+1}$. This last finding is particularly surprising given that heterogeneity is known to lead to high robustness against random failures in many other systems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube