Testing Cluster Structure of Graphs (1504.03294v1)
Abstract: We study the problem of recognizing the cluster structure of a graph in the framework of property testing in the bounded degree model. Given a parameter $\varepsilon$, a $d$-bounded degree graph is defined to be $(k, \phi)$-clusterable, if it can be partitioned into no more than $k$ parts, such that the (inner) conductance of the induced subgraph on each part is at least $\phi$ and the (outer) conductance of each part is at most $c_{d,k}\varepsilon4\phi2$, where $c_{d,k}$ depends only on $d,k$. Our main result is a sublinear algorithm with the running time $\widetilde{O}(\sqrt{n}\cdot\mathrm{poly}(\phi,k,1/\varepsilon))$ that takes as input a graph with maximum degree bounded by $d$, parameters $k$, $\phi$, $\varepsilon$, and with probability at least $\frac23$, accepts the graph if it is $(k,\phi)$-clusterable and rejects the graph if it is $\varepsilon$-far from $(k, \phi*)$-clusterable for $\phi* = c'{d,k}\frac{\phi2 \varepsilon4}{\log n}$, where $c'{d,k}$ depends only on $d,k$. By the lower bound of $\Omega(\sqrt{n})$ on the number of queries needed for testing graph expansion, which corresponds to $k=1$ in our problem, our algorithm is asymptotically optimal up to polylogarithmic factors.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.