Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Ioco Theory for Probabilistic Automata (1504.02441v1)

Published 9 Apr 2015 in cs.LO

Abstract: Model-based testing (MBT) is a well-known technology, which allows for automatic test case generation, execution and evaluation. To test non-functional properties, a number of test MBT frameworks have been developed to test systems with real-time, continuous behaviour, symbolic data and quantitative system aspects. Notably, a lot of these frameworks are based on Tretmans' classical input/output conformance (ioco) framework. However, a model-based test theory handling probabilistic behaviour does not exist yet. Probability plays a role in many different systems: unreliable communication channels, randomized algorithms and communication protocols, service level agreements pinning down up-time percentages, etc. Therefore, a probabilistic test theory is of great practical importance. We present the ingredients for a probabilistic variant of ioco and define the {\pi}oco relation, show that it conservatively extends ioco and define the concepts of test case, execution and evaluation.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.